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There are many portfolio manage-
ment tasks where forming views 
on future correlation of assets is 
essential. Hedging unwanted sys-

tematic exposures is one such task; portfolio 
construction is another. It is well established 
(see, for example, Lehmann and Casella 
(1998) and Evans, Hastings, and Peacock 
(1993)) that to the extent our views on future 
correlations are obtained through analyzing 
finite historical samples, they are associated 
with estimation errors. Judging the magni-
tude of such estimation errors is therefore a 
key component of the investment process. If 
those errors happen to exceed the estimated 
values themselves, we may be compelled to 
disregard historical estimates as unreliable for 
all practical purposes and resort to postulated 
(assumed) values of correlations between 
assets (for example, by assuming that cor-
relations are zero). Acting on “noise” may 
lead to erroneous hedging decisions or sub-
optimal portfolio performance out of sample; 
both are outcomes that a prudent investor 
would prefer to avoid. Conversely, if esti-
mation errors are deemed to be low, we can 
view historical correlation estimates as being 
“significant beyond reasonable doubt” and 
can use them to guide our actions.

A recent article by Engle, Focardi, and 
Fabozzi (2016) reviewed the closely related 
topic of factor-based modeling in invest-
ment management and addressed how the 

number of factor variables interplays with 
sample lengths, including statistical methods 
for forecasting covariance matrices. The topic 
is complex and deeply technical, especially 
for dynamic or “active” strategies whose risk 
exposures evolve over time. In the present 
article, we discuss specific challenges associ-
ated with forecasting correlations between 
active strategies and suggest a simple heu-
ristic for estimating errors associated with 
such forecasts. We also conduct a few numer-
ical experiments to illustrate our intuition 
and provide a practical framework for its 
implementation.

The main difference between active 
strategies—hedge funds, risk premia, etc. 
and more traditional assets is the dynamic 
nature of their risk exposure. For most 
of these strategies, this dynamic nature is 
associated with some sort of Average Time 
Horizon, whether it is a moving momentum 
calculation window for a trend following 
strategy, or the frequency of reported earn-
ings for an equity value premium. Our main 
contribution lies in observing that for active 
strategies with Average Time Horizon L 
extending over multiple data points within 
the historical sample (L  1) (but smaller 
than the available sample size, L), the number 
of independent observations in that sample 
is closer to L/L than to L. This leads to the 
correlation estimation error scaling down 
with sample size as 1 /L L, which is much 
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slower than the L1  scaling that traditional thinking 
may suggest. This fact leads to significant modifications 
in how we hedge and construct portfolios of active 
strategies based on historical correlation estimates.

We will start with a hedging problem when an 
investor wants to remove systematic exposure to a 
“market” from a given strategy, we evaluate an optimal 
hedge ratio for such procedure, and decide whether 
hedging is warranted. A t-statistic ref lecting our intu-
ition is suggested.

We will then embark on a broader discussion of a 
portfolio construction problem. A new “litmus test” is 
suggested for determining whether a correlation matrix 
across multiple active strategies may be effectively esti-
mated from a historical sample.

IS AN “OPTIMAL HEDGE RATIO”  
ALWAYS OPTIMAL?

Hedging of unwanted systematic exposure is often 
an essential part of an investment strategy. The process 
typically involves determining the appropriate hedge 
ratio b for the strategy and then, for each $1 of exposure 
to a strategy, also establishing -b times $1 position in 
whatever asset an investor is attempting to hedge with. 
Broad equity market exposure is often hedged, as is 
exposure to interest rates, for example.

A traditional approach to determining an “optimal” 
hedge ratio is an attempt to minimize hedged portfolio 
variance. If ri are strategy returns and xi are “market” 
returns, an exposure that we are trying to hedge, the 
goal of a traditional hedging strategy is to f ind such 
hedge ratio b that minimizes variance of the hedged 
portfolio ri - bxi. Calculation is straightforward and 
yields “optimal” hedge ratio of

 β∗ = ρ σ
σxr

r

x

 (1)

where rxr is a correlation coefficient between the strategy 
returns and market returns and σr and σx are strategy and 
market volatilities respectively.

But is such a hedge ratio always optimal? In most 
cases, investors understand “optimality” in the sense 
of maximizing risk-adjusted returns, for example, as 
expressed through a Sharpe ratio. That may or may 
not yield the same answer as minimizing volatility. 

The Sharpe ratio of the hedged strategy where the hedge 
ratio is given by equation (1) is
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Here SRr r r= µ σ  is the Sharpe ratio of the unhedged 

strategy and SRx is the same ratio for the “market.” 
Elementary analysis shows that SRH is not always higher 
than the Sharpe ratio of the unhedged strategy SRr. 
Instead, assuming that all Sharpe ratios are positive and 
correlation rxr is positive as well (which provides the 
original inclination to hedge), hedging according to 
equation (1) improves the risk-adjusted returns of the 
unhedged strategy (SRH > SRr) only if
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+
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where S SR SRx r.=  The result is easy to interpret. 
When hedging, you replace a portfolio where you are 
long the strategy with a portfolio where you are long the 
strategy and short the hedge. Improvement of a Sharpe 
ratio associated with such replacement depends on both 
the correlation between the strategy and the hedge and 
on their standalone risk-adjusted returns. Equation (3) 
effectively tells us that hedging according to equation (1) 
improves risk-adjusted returns only if the correlation 
coefficient is large enough; otherwise it leads to a Sharpe 
ratio reduction and may be unwarranted.

HEDGING AMID ESTIMATION 
UNCERTAINTY

Equations (1) and (3) would provide a very 
straightforward guide to hedging if not for the elephant 
in the room—estimation uncertainty. We never really 
know precisely the values of volatilities, correlations, 
or Sharpe ratios. We could either infer them from some 
exogenous considerations, or estimate them from the 
historical data available to us.

Estimating errors associated with the process 
of calculating statistics from finite samples is a well-
established area of mathematics. While the details depend 
on what specific measure we are trying to analyze, it has 
been shown that for the normally distributed random 
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variables, estimation errors generally decrease inversely 
proportionally to the square root of the sample size L 
(see, e.g., Lehmann and Casella 1998 and Evans, Hast-
ings, and Peacock 1993). For mean and standard devia-
tion, estimation errors are approximated by:

 ( ˆ ) ˆ
ˆ

Error Var
L

{ }µ = µ = σ
 (4a)

 ( ˆ ) {ˆ}
ˆ

2 1
Error Var

L( )
σ = σ ≈ σ

∗ −
 (4b)

For the correlation coeff icient, estimation error (for 
relatively large sample with L  1) is also inversely 
proportional to the square root of the sample size after 
the Fisher transformation is applied:
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We could translate equation (5a) into the estimate for 
Error ρ( ˆ )  observing that for the relatively small errors, 

Error
z

Error zρ ≈ ∂ρ
∂

( ˆ )
ˆ

ˆ
( ˆ ). Expressing ρ̂  through ẑ  and 

taking the derivative, we arrive at the following estimate 
for the correlation sampling error:
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Here µ σ ρˆ , ˆ , ˆ  are sample estimates obtained by analyzing 
the historical sample.

What are the practical implications of this for 
hedging in light of equation (3)? The f irst observa-
tion we would like to make is that precise estimation 
of Sharpe ratios from historical samples is extremely 
difficult. Expected returns for the financial assets (and 
strategies) tend to be small as compared to their vol-
atilities, at least over moderate time horizons. At the 
same time, according to equation (4a), the uncertainty 
in estimating those expected returns is determined by 
these comparably large volatilities. As a result, most 
investors rely on exogenous (a.k.a. “assumed”) values 

for Sharpe ratios for strategies (and markets) based on 
their economic validity or empirical evidence of similar 
strategies ( just like the expected Sharpe ratio of a trend 
following strategy with a given time horizon on a single 
market is often estimated by simultaneously analyzing 
such strategies across many time horizons and hundreds 
of markets). The good news is that here we are trying 
to estimate the ratio of Sharpe ratios of the market and 
the strategy and for most realistic cases we can assume 
such a ratio to be below one.

That leaves the correlation coefficient as the only 
variable worthy of estimating from historical data for 
the purposes of including it in equation (2). The tradi-
tional way of making decisions based on levels of “noisy” 
variables is to build a t-statistic ref lecting the extent to 
which the value of the noisy variable—in this case cor-
relation—rises above the noise levels. Equation (3) leads 
to the following form of a t-statistic appropriate for our 
hedging problem:

 t

S
S

Error
=
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+

ρ
-stat

ˆ 2
1

( ˆ )
.def

2

 (6)

Here S is our view on the ratio of risk-adjusted returns 
between the “market” and the “strategy” and Error ρ( ˆ )  
is the estimation error for correlation. In the absence 
of other considerations, we would expect this error to 
be well estimated by equation (5b), with L being the 
number of data points in the historical sample.

Will this method work equally well for both tradi-
tional assets and active strategies? As we will show in the 
next section, it does work reasonably well for traditional 
assets. At the same time, using unmodified equations 
(5b)-(6) for active strategies can significantly underesti-
mate estimation errors. As it turns out, determining the 
appropriate “size” for a given historical sample is not as 
straightforward in the case of active strategies as it may 
seem to be at first.

DEFINING THE “SAMPLE SIZE” 
WHEN THE STRATEGY IS ACTIVE

Let us begin by taking a traditional asset—the DAX 
Index (“DAX”)—and attempt to measure its correlation 
to the “market” defined as S&P 500 Index (“SPX”). In 
our numerical experiment we took 10 years of historical 
data between 2007 and 2016, in the form of both a daily 
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time series and a weekly one. We then created a number 
of “samples” by calculating the correlations between 
the DAX and the SPX over moving windows of size L 
ranging from 10 to 50 and we studied the average cor-
relation across the samples and the dispersion of that cor-
relation, as an empirical way to gauge estimation error. 
Notably, for the daily time series L ranging “between 
10 and 50” meant 10 to 50 days, while for the weekly 
time series the same L meant 10 to 50 weeks. Exhibit 1 
presents results of this experiment.

What can we infer from Exhibit 1? Both weekly 
and daily data-based estimation errors indeed reduce as 
sample size increases, in accordance with the statistical 
theory. Also, albeit imperfect, equation (5b) provides an 
important base line in our error estimation process. This 
is quite helpful because it implies that whenever studies 
of the type described in Exhibit 1 are not feasible (e.g., 
due to lack of data) it is sufficient to count number of 
data points in the sample and equation (5b) would yield 
a reasonable estimation error for the correlation coef-
ficient and help determine whether hedging is indeed 
warranted.

Our f inal observation from Exhibit 1 is that 
both empirically observed and theoretically estimated 
errors for correlations are well below average sample 
correlations for daily and weekly data. In other words, 
the correlation between the DAX and the SPX seems 
to indeed exist “beyond reasonable doubt.” If we were 
deciding whether to hedge DAX exposure with SPX, 
we could use our views on the relative Sharpe ratios of 
DAX and SPX and equation (3) as a guide in helping 
us to make a decision.

Let us now replace our buy and hold position in the 
DAX index with a simple active strategy applied to that 
index. We define “active” strategies as those where the 
portfolio changes its composition (and hence risk char-
acteristics) over time. Let’s use a very simple trend fol-
lowing strategy formulated as follows:

- At the end of every time period t we measure the 
average DAX index return for the moving window 
that starts at t- Z + 1 and ends at t.

- If that average return is positive, then for the t + 1 
period we hold a long $1 position in the DAX 

e x h i b i t  1
The DAX and the SPX
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index; if it is negative—we hold a short $1 position 
in the DAX index.

We will name such strategy “DAX Trend (Z)”. 
Let us choose value of Z = 30 (results are similar for a 
broad range of Zs), apply it to the same data set as used 
above, and recreate our earlier study of estimation error. 
Results are shown in Exhibit 2.

The results have changed dramatically when 
compared with a buy and hold strategy. “Naïve” 1 L  
approach (with L being the number of historical data 
points) to estimation error leads us to the conclusion 
that correlation, at least for the weekly data sample, is 
significant and hence hedging may be warranted. At the 
same time, such a conclusion is not supported by empiri-
cally observed errors, which are much higher and imply 
that hedging is unwarranted.

The contradiction can be resolved if we recall 
that equations (5a–b) were derived under the assump-
tion that each observation in the sample is independent 
from the others (this is why the L used in those equa-
tions is often called “number of degrees of freedom” 
as opposed to the “sample size”). By simultaneously 

using data over a certain time horizon (Z) to make 
decisions at a given point in time, an active strategy 
like DAX Trend (Z) reduces the effective number of 
independent data points in the sample from the sample 
size L to the sample size divided by the average time 
horizon of the strategy, which we will denote as L. The 
longer the time horizon of the strategy is, the longer 
the average trade takes, the smaller number of inde-
pendent observations we actually have in our sample, 
and hence the higher estimation error we should be  
prepared to face.

We can now combine our new understanding 
of equations (5a–b) and (6) into the first result of this 
article:

 t

S
S

Modified Error
=

ρ −
+

ρ
-stat

ˆ 2
1

( ˆ )
def

2

 (7a)

 ( ˆ )
1

cosh( ˆ )
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/
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z L L
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e x h i b i t  2
DAX Trend (30) and SPX
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where L is the Average Time Horizon of the active 
strategy. We need to replace sample length L with the effective 
sample length L L L=  before using the traditional error estima-
tion formulae in order to incorporate the active nature of 
the investment strategy.

CALCULATING MODIFIED ERRORS 
USING THE VOLATILITY-BASED 
TURNOVER CONCEPT

For the trend following strategy described above, 
it is easy to link Average Time Horizon L to Z. How 
about a more general case? Sometimes L may be esti-
mated by looking at the strategy formulation, time 
horizon of signals, and the history of strategy turnover. 
If we are fortunate to have a full history of portfolio 
weights for all strategies (or full description of those 
strategies allowing us to reproduce those weights), we 
should be able to estimate the Average Time Horizon 
consistently across strategies. One way to do that1 is to 
utilize the Volatility-Based Portfolio Turnover concept 
introduced recently by Gnedenko and Yelnik (2016).

The Volatility-Based Portfolio Turnover was 
introduced to provide a consistent framework for deter-
mining how actively we are changing the risk profile 
of the portfolio, while executing an active strategy. It 
ensures that certain intuitive preferences regarding turn-
over estimation hold true. For example, we would often 
prefer trading activity in more risky assets within a port-
folio to contribute more to the turnover than trading in 
its less volatile components. Or we would expect that 
replacing an asset with a similar one (a roll of futures 
contracts near the expiration is a good example of such 
a situation) would only minimally contribute to the 
turnover.

For an active strategy involving a single asset 
(we kept notation consistent with earlier sections of 
our paper), Gnedenko and Yelnik’s definition of the 
Volatility-Based Portfolio Turnover is

 volPT
L

w w
i

L

i i i∑= σ −
=

−
1

.def

1
1  (8)

1 The authors are grateful to Igor Yelnik for pointing this 
out and for bringing the Gnedenko and Yelnik (2016) article to 
their attention.

Here {wi} are historical weights and σi is volatility for 
the asset at ti.

In other words, Volatility-Based Portfolio Turn-
over is defined as the averaged sum of volatilities corre-
sponding to the difference portfolios (this measure is easy to 
annualize or use for any other “standard” time interval). 
In the general case of a multi-asset portfolio, expression 
transforms into

 
1def

1

volPT
L i

L

i
T

i i∑= ∆ ∑ ∆
=

 (9)

where DI = wi – wi–1 is the difference portfolio at time ti 
and Si is the covariance matrix.

Gnedenko and Yelnik (2016) also introduced a 
concept of Effective Number of Trades (“ENT”) per 
unit of time as volPT normalized by an average portfolio 

risk 1 .1L i
L

i
T

i iγ = ∑ ∑= w w
A possible analytical framework for evaluating 

Average Time Horizon L for a generic active strategy 
is to calculate it as an inverse of the Effective Number of 
Trades over a “unit” time period of our historical data 
sample (1 day or 1 week):

 1

1

w w
i

L

i
T

ii

i

L

i
T

i i

L
∑ ∑

∑
=

∆ ∑ ∆
=

=

 (10)

Let us use this definition—equation (10)—to calculate 
L for the DAX Trend (Z) strategy. Having accomplished 
that exercise, we would put ourselves in a position to 
evaluate correlation estimation error using equation 
(7b). Exhibit 3 summarizes the result (we only included 
results where  1L L L= ).

We can observe that using equation (7b) in combi-
nation with equation (10) yields estimation errors fore-
casts that are in good accordance with the empirical 
results validating our intuition.

THE ROLE OF ESTIMATION ERRORS 
IN PORTFOLIO CONSTRUCTION

So far we have looked at correlation estimation 
errors from the angle of hedging unwanted “market” 
exposure for a single strategy. Let us now comment 
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on a more general problem of portfolio construction, 
as determining correlations or other “interactions” 
between strategies is an essential step of that problem. 
Building reliable estimators for a correlation matrix based 
on historical, finite sample data has been studied by a 
wide variety of researchers and practitioners, who have 
provided many insights over time on how to “clean” or 
“shrink” those matrices in the attempt to reduce data 
f itting in portfolio construction and improve out of 
sample results. Providing a thorough review of these 
methods is beyond the scope of this article; Haft (1980) 
introduced correlation matrix shrinkage for the f irst 
time, while Ledoit and Wolf (2004), Bun, Bouchaud, 
and Potters (2016), and Engle, Focardi, and Fabozzi 
(2016) provide excellent early and recent reviews of 
further research advances in this subject.

Statistical researchers may vary in ways they “clean” 
correlation matrices, but they agree on two principles:

 (1) It is generally a bad idea for the portfolio con-
struction process to use correlation matrices 
directly calculated using historical data, as such 
an approach introduces systematic errors that may 

lead to portfolios with grossly underestimated 
out-of-sample risk.

 (2) While for a single correlation coeff icient, the 
quality of a historical estimate is driven by the 
criteria L  1, where L is the number of data 
points in a historical sample, for the portfolio 
optimization problem this criteria changes to 

 1L N , with N being the number of assets 
in the portfolio. If L N  ratio is not sufficiently 
high the, “signal” contained in the historical 
sample becomes effectively indistinguishable 
from “noise” from the estimation error rendering 
historical correlation matrices useless.

Earlier in this article we illustrated that for active 
strategies with Average Time Horizon L we need to 
replace sample length L with the effective sample length 
L L L=  before placing it into the error estimation 
formulae. The same intuition drives us to the conclusion 
that the criteria we should use in determining whether 
historical correlation matrices can be indeed fruitfully 
used for portfolio optimization purposes should be mod-
ified in a similar fashion and become

e x h i b i t  3
Modified Estimates
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 1
L
N

L
N

�
�

L
=  (11)

What are the practical implications of this conclusion 
for the construction of portfolios of active strategies? 
For construction schemes that incorporate the realized 
correlation matrix with a weight depending on how 
confident the investor is in such matrix, a t-statistic 
incorporating equation (11) could be designed to serve 
as such a weight. For correlation matrix cleaning tech-
niques based on random matrix analysis—a.k.a. eigen-
value “clipping”—the modif ied ratio introduced in 
equation (11) could be used for calculating the eigen-
value cut-off value.

How material are modif ications implied by 
equation (11) for portfolios of hedge funds or risk 
premia? Let us start with the case of hedge funds. A 
typical history available to a hedge fund allocator is 
5–10 years of data, while the typical number of man-
agers in a diversified hedge fund portfolio is between 
10 and 30. Taking a middle of each range, we arrive at 
L N ~ 90 20 4.5= , not much higher than 1 even before 
adjusting for the Average Time Horizon of the under-
lying hedge fund strategies. Taking into account that 
many hedge funds execute active strategies with time 
horizons longer than a single month (long-term trend 
following, systematic macro, and many of the credit 
strategies, for example), equation (11) would argue 
strongly against using portfolio construction schemes 
for hedge fund portfolios that rely heavily on historical 
correlation matrices.

What about “alternative risk premia” portfolios 
that have received so much attention in recent years? 
Such portfolios tend to be much more transparent to 
investors, with more historical data often being available, 
including daily and weekly performance going back for 
many years. That would increase the sample size from 
60–120 data points (for 5–10 years) to thousands of data 
points, seemingly providing enough data for the robust 
historical correlation analysis and subsequent portfolio 
optimization. Unfortunately, the intuition incorporated 
into equation (11) drives us to a much more conservative 
conclusion. Most risk premia strategies are characterized 
by low risk turnover and long time horizons, making 

�L L L L= . A risk premia strategy like PPP-based 
currency value counts its typical trade length in years 
no matter whether its performance is supplied on a 

monthly, weekly, or daily basis, or even every minute. 
The effective number of independent data points in the 
10-year sample will still be just a few points, making 
the historical correlation matrix involving this strategy 
and similar strategies highly noisy and ineffective for the 
portfolio optimization purposes.

CONCLUDING REMARKS

An important comment worth making is that the 
situation when the condition of equation (11) is not met 
or the t-statistic (7a-b) is small does not necessarily mean 
a complete lack of correlations. It merely means that such 
correlations cannot be discovered through the statistical 
analysis of historical samples. We can still postulate non-
zero correlations from structural considerations when we 
have a reason to believe they exist. An obvious but still 
key example of this situation is when an active strategy is 
put on top of a stable, non-cash benchmark. In this case, 
considerations above only apply to the excess return of 
the strategy, while correlation of the benchmark return 
stream to other assets in the portfolio should, of course, 
be fully incorporated into the analysis.

A somewhat related situation is one where we know 
that an otherwise active strategy maintains a definitive 
and persistent bias. For example, if an Equity Long/
Short hedge fund maintains a long bias of 30%, it is 
completely legitimate to use b0 = 0.3 as a base line value 
for the hedge ratio and then use the considerations out-
lined above to gauge if we can confidently affirm (using 
t-statistic (7)) that this hedge fund has an equity market 
long bias above or below b0.

Another useful example is a well-known FX 
carry strategy where an investor builds a relative value 
portfolio of currencies, going long those with higher 
prevailing interest rates and short those with lower pre-
vailing rates. FX carry trades are likely to have a left-tail 
correlation with equity indexes irrespective of the spe-
cific composition of the carry portfolio at a given point 
in time. Investors in low-yielding countries are taking 
a risk (going against their home country bias) to invest 
in a higher yielding country, and will likely pull that 
capital back when equities collapse and they get nervous. 
One can build a model for such behavior that implies 
non-zero correlations, even if purely statistical analysis 
does not demonstrate a sufficient level of confidence. It is 
the universal behavioral bias that creates the correlation 

 by guest on July 5, 2018http://jai.iijournals.com/Downloaded from 

http://jai.iijournals.com/


The Journal of alTernaTive invesTmenTs   47Summer 2018

structure in this case rather than anything intrinsic to 
a specific set of assets or a given historical data sample.

In many situations involving active strategies, it is 
difficult to either build reliable structural models leading 
to definitive expected correlations, or to infer those cor-
relations from historical data. Alternative investments 
practitioners have long recognized this, which could 
help explain popularity of non-optimization portfolio 
construction methods where correlation takes a dis-
tinctly secondary role, including various forms of risk 
parity (see Da Silva, Lee, and Pornrojnangkool 2008; 
Lee 2011; Asness, Frazzini, and Pedersen 2012; Rudin 
and Marr 2016; for reviews of the approach and addi-
tional literature). Our present f indings endorse this 
choice when it comes to active strategies characterized 
by either low frequency of available historical data, or 
long time horizons for trading, or both.

The authors are grateful to John Dolfin, Geoffrey 
Kelley, James Lewis, and Igor Yelnik for valuable 
discussions.
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